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Abstract. We present numerical simulation studies on the two-dimensional easy-plane 
classical ferromagnetic Heisenberg model with fourfold in-plane symmetry breaking. Con- 
tinuum limit equations of motion are obtained and some non-linear particular solutions are 
discussed. Our simulation data are compared with experimental data obtained for Rb,CrCI,. 
We find evidence for two transition temperatures in this model. 

1. Introduction 

In recent years there has been a considerable amount of theoretical work (Regnault 
and Rossad-Mignod 1987) concentrated on two-dimensional (2D) or quasi-2~ physical 
systems. Magnetic 2~ systems are particularly interesting since they allow treatment 
based on simple model spin Hamiltonians which have successfully described linear 
spin waves. Several possibilities of ferromagnetic and antiferromagnetic isotropic or 
anisotropic exchange interactions and, also, in-plane symmetry breaking can be ana- 
lytically or numerically studied. Depending on the particular features of each model 
there can be, for example, one or more ‘phase transitions’. In a classical picture, non- 
linear domain walls, vortices and spin waves are potentially important elementary 
excitations for the understanding of these models. For a system with easy-plane sym- 
metry there is a topological transition associated with the unbinding of vortex-anti- 
vortex pairs (Kosterlitz and Thouless 1973) and an additional in-plane symmetry break- 
ing can lead to a further transition depending on the degree of symmetry breaking (Jose 
et a1 1977). 

Improvements in materials preparation have made available a considerable number 
of materials that can be classified as quasi-2~ magnets. The primary characteristic of 
such materials is that the inter-planar interaction is much smaller than the intra-planar 
one so that they behave predominantly two-dimensionally, even in the vicinity of T, if 
the three-dimensional ( 3 ~ )  fluctuations are still weak enough to be outside the 3~ critical 
regime (Regnault and Rossad-Mignod 1987). 

Rubidium chromous chloride (Rb2CrC14) is one of these layered-type magnets; 
the nearest-neighbour (NN) inter-planar interaction is about the NN intra-planar 
$ Permanent address: Universidade Federal de Minas Gerais, CP702, Belo Horizonte, MG, Brazil. 
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interaction (Hutchings et a1 1981). This weak inter-planar coupling is responsible for a 
3D ordering at T, = 52.2 K. Several researchers (Fair et a1 1978, Lindgard et a1 1980, 
Hutchings et a1 1981,1986, Cornelius et a1 1986, Kleemann et a1 1986) have studied the 
properties of this compound experimentally and, by now, it is well established that the 
dominant interaction is a ferromagnetic exchange between the NNS in the planes and 
that single-ion terms restrict the spins' movement to these planes (i.e. easy-plane ani- 
sotropy). In terms of these properties, Rb2CrC14 is somewhat similar to K,CuF4, another 
quasi-2~ magnetic material which has been extensively studied (Funahashi et a1 1976, 
Moussa and Villain 1977, Nirakawa and Ubukoschi 1981, Hirakawa et a1 1982). There 
are, however, important differences between these two compounds. The Cu2+ ion in 
K2CuF, has S = f and no in-plane anisotropy is expected in the Hamiltonian. The Cr2+ 
in Rb2CrC1, has a larger spin, S = 2, and is thus expected to behave more classically; 
moreover, it is subject to single-ion anisotropy effects which tend to align spins along 
the [llO] and symmetry-related directions. Although KZCuF4 cannot be classified as a 
true 2D XY magnet, because the interaction is dominantly of Heisenberg type, magnetic 
measurements and neutron scattering studies have suggested that the transition has a 
Kosterlitz-Thouless (KT) character, reflecting some easy-plane anisotropy. Observed 
critical parameters including the inverse correlation length K and the critical exponent 
7 can be fitted to KT theory with reasonable success. The experimental results are 
consistent with vortex theory (Hikami and Tsuneto 1980) and with Monte Carlo (MC) 
simulations (Kawabata and Bishop 1986a) which have shown that the transition tem- 
perature TKT is weakly dependent on the easy-plane anisotropy, except when very close 
to the Heisenberg model (those studies have not considered an in-plane anisotropy). 
Similar attempts to identify a KT transition have been made in Rb2CrC14 but a definite 
conclusion has not been achieved and it is interesting to udderstand the extent to which 
the in-plane anisotropy is responsible for the observed discrepancies. 

At this point, it is useful to give a brief summary of some of the experimental 
results obtained for Rb2CrC14. Inelastic neutron scattering techniques have been used to 
investigate the low-wavevector spin waves at several temperatures below T,. Sharp spin 
waves are observed at all q (Hutchings et a1 (1981, 1986), and references cited therein) 
with a gap at q = 0 due to the in-plane anisotropy. The low-wavevector spin waves 
renormalise anomalously as the temperature increases towards T,. Similar renor- 
nialisation effects were observed in K,CuF4 and have been attributed to 2DXY behaviour 
(Hirakawa et a1 1983) which leads to a universal jump in the stiffness constant at TKT 
(Nelson and Kosterlitz 1979). However, concerning Rb2CrC14, it is not yet clear what is 
the cause of this anomalous renormalisation. Extensive magnetisation studies (Cornelius 
et a1 1986) reveal than an isothermal critical behaviour as M CC If"* ( M  is the mag- 
netisation and If is the applied field), at low temperatures, leads to a temperature 
dependence for the 6 exponent, another characteristic behaviour predicted by the KT 
theory. Associating TKT with the temperature at which 6 =15 (Kosterlitz 1974), a TKT 
value of 45.5 K was obtained. However, above T, the susceptibility can be fitted equally 
well to a KT theory or to a conventional power-law behaviour and, as stated before, the 
final results do not permit us to identify unambiguously the true nature of the critical 
behaviour of Rb &rC14. 

Our aim in this work is to provide some additional information on dynamics for this 
particular class of easy-plane ferromagnets with in-plane symmetry breaking. Some MC 
studies for 2~ easy-plane Heisenberg models with Ising and sixfold in-plane symmetry 
breaking have becn performed by Kawabata and Bishop (1986b) but only static thermo- 
dynamic properties were studied. On the ha5is of a simplified model Hamiltonian 
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proposed by Hutchings et a1 (1981), Kawabata and Bishop considered the Ising in- 
plane symmetry breaking as appropriate for describing Rb2CrC14. We shall discuss the 
relevance of considering the full Hamiltonian (92). A fourfold symmetry breaking 
(denoted byp = 4), asappropriate to Rb2CrC1,, is particularly interesting since we know 
from the work of Jose et a1 (1977) that p = 4 corresponds to a kind of ‘border-line’ in the 
sense that systems withp < 4 are not expected to show a KT transition while systems with 
p > 4 are expectedto show two transitions, one of which can be related to a KT transition, 
and the other to domain ordering. However, those theoretical results were obtained 
for the planar model and could be modified when out-of-plane spin components are 
included. Here we have investigated the p = 4 case with numerical simulations using a 
combined Mc-molecular dynamics (MC-MD) approach. A (microcanonical) MD inte- 
gration of equations of motion was performed using initial configurations generated by 
a MC simulation. The total space-time Fourier transform of the correlation function 
S(q, w )  includes the effect of all excitations and their interactions. Since there are no 3D 
effects, we have the advantage of isolating purely ZD information. Unfortunately, at this 
time there is no available theory which includes domain walls, vortices, spin waves and 
interactions between them to which we can compare our numerical experiments. We 
believe that all these excitations must be considered in order to understand the dynamical 
aspects related to this system. Nevertheless, the analysis of our simulation data provides 
useful information, including the existence of two transition temperatures for Rb2CrC14. 

The paper is organised as follows: in § 2, we discuss the model Hamiltonian to be 
used in our studies Rb2CrC1, including improvements to previous models so as to 
accommodate large-amplitude (non-linear) excitations; 9 3 contains the equations of 
motion obtained in the context of a continuum theory. Some particular solutions to 
these equations are also discussed. We present our simulation data and analysis in 9 4 
and the final conclusions are given in § 5 .  

2. Model Hamiltonian for Rb2CrC1, 

It has been established that the magnetic ions in Rb,CrCl, lie in planar square arrays 
and are coupled via C1 ions situated between them but displaced from the middle of the 
Cr2+ positions (De Lang et a1 1977, Day et al 1979). This distortion causes alternate 
atoms to have an easy axis in thex direction andy direction, respectively. The previously 
proposed spin Hamiltonian is 

The parameters involved have been measured from linear spin-wave dispersion data 
(Hutchings et a1 1981). J = 15.12K is the NN ferromagnetic exchange constant, G = 
3.14K is the staggered single-ion anisotropy constant creating two sublattices 1 and 2, 
and D = -0.14 K is the planar anisotropy constant. Despite the negative value of D ,  we 
still have planar behaviour assured by the high value taken by G. 

It has been found (Hutchings et a1 1981) that the linear spin-wave dispersion of 
Rb2CrC1, is also well described by the following simple model Hamiltonian: 

H =  - 
ij i i 

where d is along [ 1101 and 
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j= J c o s 2 a  
G = G sin 2 a  (2.3) 

= D + ( G / 2 ) ( 1  - sin 2 a )  
a = G / 8 J  corresponds to the canting angle and can be determined by minimising the 
classical internal energy. Hamiltonian (2.2) is an approximation to (2.1) obtained 
through a rotation around the z axis and by neglecting the canted two-sublattice struc- 
ture. 

It is important to emphasise that Hamiltonians (2.1) and (2.2) correspond to different 
in-plane symmetry breaking, which becomes important for non-linear effects; we have 
a fourfold in-plane symmetry from equation (2.1) while equation (2.2) describes a 
twofold or Ising-like symmetry. It is not surprising that linear spin-wave dispersion data 
can be described equally well by both Hamiltonians since the spin-wave dispersion is 
independent of the degree of symmetry breaking (that is, spin waves are perturbations 
from one of the ground-state configurations). Nevertheless, as was briefly discussed in 
01, the degree of the in-plane symmetry can be decisive in determining whether a KT 
transition is possible in these easy-plane magnets. We can expect that each of these two 
Hamiltonians supports different non-linear dynamical features. We can note that simply 
rotating the (x,y) coordinate system by 45" and retaining the two-sublattice model leads 
to a Hamiltonian exactly equivalent to (2 .1):  

H = -JC S ,  - S ,  + ( D  + ;GI (s:)2 - G s:;s$ + G E s:;sg. (2.4) 
11 I I I 

The primes indicate the new coordinate system wherex' is along [110]. The competition 
between the strong NN exchange and the sublattice-dependent twofold in-plane aniso- 
tropies (note that they are oriented at 90" to each other) results in an effective fourfold 
symmetry, plus a small canting. For an accurate description of large-amplitude non- 
linear excitations in Rb2CrC14, such as domain walls, it is essential that we use a model 
Hamiltonian with the correct ( p  = 4) symmetry. In particular, for domain walls, a p  = 
4 Hamiltonian will support 90" domain walls connecting the degenerate in-plane ground 
states, and a description by a p = 2 Hamiltonian can include only 180" domain walls. 
Also, the interactions of in-plane vortices with these domain walls will be dependent on 
the total 'twist' of the walls. Since TKT can be expected to be a sizeable fraction of J S 2 ,  
it is likely that domain walls may be easily created near the transition temperature and 
therefore they can play a part in modifying the transition through their interactions with 
vortices. As a result of this, we expect that an accurate description of a possible symmetry- 
modified KT transition Rb2CrC14 will require a model which correctly describes the 
domain walls and their effect on the vortices (and vice versa). For this reason, we have 
used Hamiltonian (2.1) in our MC-MD simulation studies for Rb2CrC14. 

3. Continuum theory for Rb2CrC1, 

The spin components can be described by four angular variables since we have two 
sublattices. Adopting a procedure similar to that used by Mikeska (1980) for the anti- 
ferromagnetic chain, we define 

s,,, = SCOS[O.,,, + ( - i y + m e . , , , ]  COS[@.,,, + ( - i ) n + m ~ p . , , , ] ;  

cos[@,,, + ( - l ) ~ + " ~ , , , ]  sin[@.,,, + ( - l ) , + , ~ p ~ , ~ ] ;  

sin[@,,, + (-l)"+"e,,,]> (3.1) 
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where (n ,  m)  denotes the spin site in the 2~ lattice. For the continuum classical dynamics, 
we assume that the spin fields 0 ( r ) ,  Q,(r),  6(r)  and ~ ( r )  ( r  = ( r ,  p )  in polar coordinates) 
vary smoothly and also that 6(r) and ~ ( r )  represent small deviationsfrom O(r)  and @(r) ,  
respectively. Including terms up to second order in spatial derivatives, the continuum 
equations of motion are 

(1/JS)0 = - 896 sin 0 - 2 sin 0 V 0  * VQ, 

(1/JS) Q, = (8e2 sin @/cos2 0)  8 q 2  sin 0 - sin 0 1 VQ, I - V2@/cos 0 

+ cos @V2@ + g6 sin 0 sin 2@ - 2g9  cos 0 cos 2@ 

+ 2d sin 0 + g sin 0(1- 2cp sin 2@) + g6 cos 0 cos 2Q, 

(3.2) 

(3.3) 
(3.4) 
(3 .5)  

( I / JS)~  = - 8 9  cos 0 - g cos 0 sin 24, 
( l / J S ) q  = 86/cos 0 + 2d6 cos 0 + go cos 0 + g sin 0 cos 2Q, 
where g = G/J and d = D/J are taken as small parameters. 

It is hard to obtain general solutions to equations (3.2)-(3.5). We shall limit ourselves 
here to some particular cases. One obvious particular static solution (0 = Q, = q = 8 = 
0) corresponds to 

0 = 6 = 0  Q, = k n/4 ( 3 . 6 ~ )  
cp = (g/8) sin 2@ (3.6b) 

i.e. planar domains oriented along the [t, 1, t l ,  01 directions. Equation (3.6b) gives 
the canted structure. Another planar (0 = 8 = 0) static solution is given by 

V2@ = ( - g 2 / 8 )  sin 4@ (3.7) 
and equation (3.66) for 9. Equation (3.7) is a sine-Gordon equation for the Q, variable 
and the argument of the sine function ( 4 0 )  reflects the fourfold in-plane symmetry 
breaking. This equation has been studied by Hudak (1982) who obtained a vortex-like 
solution 
cp = t tan-l[{sinh[g(y - y o ) / 2 ] }  {sinh[g(x - ~ ~ ) / 2 ] } - ~ ]  - (2n + 1)n /2  ( 3  * 8) 
(where n is an integer number) with vorticity t l  and which is shown in figure 1. It can 
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Figure 2. Spin-orientation plots taken at (a)  T = 
0.4J.S'. (6) T = 0.7JS2and(c) T = 0.9JS'fromour 
numerical simulation. The lengths of the lines 
are proportional to the in-plane spin components. 
The black andwhite arrows indicate, respectively, 
positive and negative out-of-plane spin com- 
ponents. 

be seen that in the region surrounding the vortex centre (xo, y o )  the vortex described by 
(3.8) does not appreciably differ from the usual vortex @ = t tan-l(y/x) of the planar 
model. The difference, however, is strong in the far-field region where the spins form 
four domains separated from each other by domain walls along @ = (2n + 1)n/4 ( n  = 
0, + 1, . . .). The energy of this vortex was also estimated by Hudak (1982) and depends 
linearly on L ,  the system size. Recall that the energy of a single planar model vortex 
diverges logarithmically with the size of the system. This logarithmic dependence comes 
from the fact that, for the planar model, the required 2n rotation of a vortex can be 
approximately equally divided among all NN pairs; moving along a circle of radius r 
having the vortex at its centre, the spins are rotated from their neighbours by an angle 
of about 1/r (Einhorn et a1 1980). The in-plane symmetry of our model does not permit 
the spins to share equally the 2n rotation and they change their orientation by n / 2  when 
crossing the domain boundaries. Since the domain boundaries have finite energy per 
unit length, the energy for a single vortex diverges with L ,  as found by Hudak, and we 
should not expect to find vortices, at least at low temperatures. However, vortex-anti- 
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vortex pairs bound by domain boundaries (strings) have finite energy and can be created, 
giving rise to a linear interaction potential between vortices. 

Entropy arguments (Lee and Grinstein 1985, Einhorn etal 1980, Tang and Mahanti 
1986) can be used to determine the phase diagram. Generally speaking, we could expect 
a transition temperature T I  such that at T > T I  the strings connecting vortex-anti-vortex 
pairs become flexible, and a transition temperature T,  = TKT due to the unbinding of 
these pairs. The phase diagram is determined by the relative magnitudes of T I  and T2.  
Our simulation studies (9 IV) for Hamiltonian (2.1) suggest two transition temperatures, 
i.e. T I  < T,. 

The particular solutions that we have discussed here are restricted to the X-Y 
plane. It is interesting to ask whether equations (3.2)-(3.5) also admit static vortex-like 
solutions with non-zero out-of-plane spin components in the region close to the vortex 
centre. This kind of solution has been found by Hikami and Tsuneto (1980) for the 
anisotropic Heisenberg model (without single-ion anisotropy terms). It has been found 
that the stability of this vortex-like solution depends on the easy-plane anisotropy (Wysin 
et a1 1988, Gouvea et a1 1989). The vortex shape is crucial in determining the out-of- 
plane correlation function, as discussed in a phenomenological model by Mertens et a1 
(1987,1989). 

4. Numerical simulation and analysis 

Acombined MC-MD method (Kawabata etal 1986) was used to determine the equilibrium 
dynamics, especially for the dynamic structure function S(q,w).  Simulations were per- 
formed on a 100 x 100 square lattice for model (2.1), with periodic boundary conditions. 
In this method, first a MC simulation is performed, producing a set of equilibrium 
configurations for a desired temperature. These configurations are then used as initial 
conditions for an energy-conserving MD simulation of the equations of motion. The time 
integration was performed with a standard fourth-order Runge-Kutta method, with a 
fixed time step of 0.04(JS)-1. The spin configuration was sampled at 512 equally spaced 
times, so that a FFT algorithm could be used for the temporal part of the space-time 
Fourier transform. To resolve spin-wave peaks adequately for the smallest wavevectors 
(q = 2n/100a), it was necessary to integrate to t = 654 (JS) - ' .  The dynamic structure 
function S""(q, 0) was then determined from the Fourier transform of the space-and- 
time-displaced correlation function (S"(O,O)S"(r, t ) ) .  In particular, we calculated in- 
plane correlations ((U = x , y )  and out-of-plane correlations (a = 2). The structure func- 
tions resulting from several initial conditions for a given temperature were then averaged 
together. Typically, we averaged over only three initial conditions, because the cal- 
culations required a central processing unit time of about 30 min per initial condition on 
a CRAY-1S vector machine. We also employed a smoothing algorithm on S(q,w),  as 
did Mertens et a1 (1987, 1989), to reduce the effects of a finite time series and statistical 
fluctuations. 

Figure 2 shows spin-orientation plots taken at several temperatures. From the spin 
orientations at the lowest temperature, T = 0.4JS2, it can be seen that the spins are 
largely confined to the X-Y plane. It is possible to identify small domains with the spin 
polarisation rotated byn/2 with respect to other domains. As the temperature increases, 
the out-of-plane spin components increase and, although the plots become increasingly 
difficult to analyse, we can see that the domains' sizes decrease, consistent with entropy 
arguments (Einhorn et a1 1980). It is very difficult to identify vortex-like structures in 
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w/2JS w/LJS 

Figure 3. Results from MC-MD simulations of Hamiltonian (2.1) on a 100 x 100 lattice for 
q = (0.10, O)n/a for (a )  in-plane correlations and ( b )  out-of-plane correlations. The data 
taken at two temperatures T = 0.5JS2(-) and T = 0.8JS2 (---). 

these figures; in order to do so, a vorticity algorithm would have to be implemented in 
the simulation. 

The space-time Fourier transforms of the correlation functions S,,(q,o) and 
S,,(q,w), for q=(q ,  0), are shown in figure 3. A central peak can be seen for all tem- 
peratures considered in both in-plane and out-of-plane correlation functions, although 
it is more intense for S,,(q, U )  than for S,,(q, w) at low tempratures. Experimentally, a 
central peak has beenobserved (Hutchings eta1 1986) near T, = 0.86JS2, the temperature 
at which 3D ordering occurs. The width r, is seen to vary approximately linearly with q 
for T < T, and quadratically for T > TC. This central peak wasfitted to a product of two 
Lorentzians, one for the w-dependence andone for the q-dependence. Such aLorentzian 
in-plane central peak has been proposed on the basis of a phenomenological theory 
(Mertens et a1 1987, 1989) for the anisotropic Heisenberg model as due to a 'gas' of 
unbound vortices. The experimental data also give a non-null r, at q = 0 (at T = 
T, > T K T )  as predicted by that phenomenology. 

The q-dependence of r, for T = 0.8JS2 and T = 0.9JS2, as extracted from our 
simulation data, is shown in figure 4. It is clear that r, shows distinct behaviour for q < qc 
(q ,  CC E - ' ,  where is the correlation length), which is also in agreement with the 
phenomenological theory: for q < qc, r, varies smoothly with q while, for q > qc, we 
have, roughly T x  cc q2 (for the X Y  model, the phenomenology predicts r, varying as 
r cc (constant + q 2 )  for small q ( q  < and as r, cx q for q %- E-'). We emphasize that 
this phenomenological theory does not include an in-plane anisotropy and discrepancies 
when comparing it with our system can be expected. However, the qualitative agreement 
mentioned above suggests that scattering within a gas of vortices can be the dominant 
contribution to the central peak for temperatures above T K T .  For tempratures below 
T K T ,  where the vortices are bound into pairs, another mechanism is required for the 
central peak and domain wall fluctuations are good candidates. Unfortunately, at the 
present time, assumptions such as these cannot be checked because of the lack of an 
adequate dynamical theory. 

The spin-wave spectrum has been evaluated to first order in the Holstein-Primakoff 
approximation by Elliott et a1 (1980): 

w q  = 2 ~ ~ [ 2  cos 2 a  + g sin 2 a  - cos 2 a  (cos q, + cos qY)] ' /*  

x [2 cos 2a + d + (g/2)(1 + sin 2 a )  - (cos q, + cos qY)l1/*. (4.1) 
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0.9JS2 (qc = 0.2n/a).  Data points and error bars result from estimating r, from plots such as 
figure 3. 

Y 
N s 

< a h  
t a l a  

Figure 5. Spin-wave dispersion obtained from the simulation data for wavevectors q along 
(a )  [t, 01 and (b )  [((I directions at T = 0.5JS2:  X ,  data taken from S,,(9, w )  curves; 0, data 
taken from S,,(q, w )  curves; -, equation (4.1). 

For finite T ,  the spectrum has been calculated by Lindgard et aZ(1980) who also included 
zero-point quantum corrections. Figure 5 shows the spin-wave dispersion obtained from 
our simulation data for wavevectors along [ 5 , O .  01 and [ [, 5,0]  directions at T = 0.5JS2. 
The full curve corresponds to equation (4.1). It can be seen that the relative renor- 
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T / J S ~  T / J ~  

Figure 6. Spin-wave frequencies (from our simulations) as functions of temperature deter- 
mined from (a) in-plane correlations s,, ( q ,  U) and (b )  out-of-plane correlations s,, ( 4 .  U ) ,  

for various wavevectors given in units of n/50a. 

I 1 I I I I 1 
0.5 0.7 0.9 

T / J S ~  

I 1 1 1 1 1 1 
0 .006 ibl  

0 5  0 7  0 9  

T/JS * 
Figure 7. Height S,,(q, U = 0) of the central peak ((U) cr = x and ( b )  cr = I)) multiplied by 
the width r, ( 4 )  as a function of T ,  for various wavevectors given in units of n/50a. 

malisation of the mode in the [c, 0, 01 direction is less pronounced than that of the 
[ f ,  5;, 01 mode. A similar observation was made by Fair et a1 (1978) for [0.15,0,0] and 
[0.1,0.1,0] modes which have only slightly different wavevectors and energies. This 
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effect can be due to the in-plane fourfold symmetry. In figure 6 we show how the low- 
wavevector spin waves renormalise as the temperature increases. As pointed out in 0 1, 
an anomalous renormalisation has been experimentally observed (Hutchings et a1 1981) 
and is strongly wavevector dependent, being greatest for the low-wavevector modes. 
This wavevector dependence is also shown in figure 6. 

Figure 7 shows the product of the height S,,(q, w = 0) [a = x ,  21 of the central peak 
and the width T,(q) as a function of Tfor low wavevectors. This product is proportional 
to the intensity of the central peak (the proportionality constant depends on the shape 
of the’peak) which, in the limit q+ 0, can be related to the magnetic susceptibility. 
These graphs suggest two transition temperatures around T I  = 0. 5JS2 and Tz = 0. 8 J S 2 :  
we recall that T = 0.75JS2 has been identified as a possible value for TKT. The procedure 
adopted here is approximated and simply gives an indication that a transition can occur 
at each of these temperatures. Simulation studies performed by Kawabata and Bishop 
(1986a, b) using the simplified Hamiltonian, equation (2.2), also give evidence for two 
transition temperatures ( T I  = 0 . 3 J S 2 ;  T2 = 0.8JS2) .  

5. Conclusion 

In this work, we have discussed the effects of in-plane anisotropy fields on the large- 
amplitude non-linear excitations of 2~ easy-plane Heisenberg models. In particular, for 
RbzCrC14, we emphasise the relevance of taking the full Hamiltonian given by equation 
(2.1) in order to describe domain walls properly and their interaction with vortices. 

The comparison between our simulation and experimental data show good quali- 
tative agreement. We were able to observe the spin-wave renormalisation as the tem- 
perature increases for both w, and U,, (figure 6) where w, and w,, are spin-wave 
frequencies determined from the in-plane correlation S,,(q, w )  and out-of-plane cor- 
relation S,,(q, m ) ,  respectively. The experimental results, taken from neutron scattering 
experiments, correspond to w, renormalisation. Recent simulation studies (Wysin er a1 
1988) on the ZDXY ferromagnetic model also show that both w, and U,, renormalise 
when T+ TKT, but the softening of w, is much stronger than for w,,. Here the softenings 
of w,, and w, are comparable and this could be because the interaction is predominantly 
of the Heisenberg type. On the contrary, the in-plane anisotropy seems to be responsible 
for the differences observed in the spin-wave dispersion for wavevectors along the 
[g, 0,0] and [g, g, 01 directions. 

The simulation data also present evidence for two transition temperatures around 
T1 = 0.5JS2 and Tz = 0.8JS2.  Experimentally, it would be very difficult to observe the 
lower transition T1 because it is well below the 3D ordering temperature, but the value 
found for T2 is in good agreement with the value T = 0.75JS2 which has been identified 
previously as a possible value for TKT for RbzCrC14. 
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